
NASA-CR-203056

ISI Reprint Series

ISI/RS-93-419

May 1993

Proxy-Based Authorization and
Accounting for Distributed

Systems

B. Clifford Neuman

ISI/RS-93-419

May 1993

University of Southern California

Information Science Institute

4676Admiralty Way, Marina del Rey, CA 90292-6695

310-822-1511

This research was supported in part by the National Science Foundation (Grant No. CCR-8619663), The Washington

Technology Centers, Digital Equipment Corporation, and the Defense Advance Research Projects Agency under

NASA cooperative Agreement NCC-2-539. The views and conclusions contained in this paper are those of the author

and should not be interpreted as representing the official policies, either expressed or implied, of any of the funding

agencies.

©1993 IEEE. Reprinted, with permission, from Proceedings of the 13th International Conference on Distributed

Computing Systems; Pittsburgh, May 1993; 283-291.

Proxy-Based Authorization and Accounting

for Distributed Systems

B. Clifford Neuman
Information Sciences Institute

University of Southern California

Abstract

Despite recent widespread interest in the secure au-
thentication of principals across computer networks

there has been considerably less discussion of dis-

tributed mechanisms to support authorization and ac-

counting. By generalizing the authentication model to
support restricted proxies, both authorization and ac-

counting can be easily supported. This paper presents

the proxy model for authorization and shows how the

model can be used to support a wide range of au-
thorization and accounting mechanisms. The proxy
model strikes a balance between access-control-list and

capability.based mechanisms allowing each to be used

where appropriate and allowing their use in combina-

tion. The paper describes how restricted proxies can
be supported using existing authentication methods.

This paper presents a unified model for authentica-

tion, authorization, and accounting that is based on

proxies. Section 2 defines the term proxy and briefly
describes how proxies can be supported by existing

authentication mechanisms. The use of proxies for au-

thorization is demonstrated in Section 3. The proxy
model strikes a balance between access-control-list and

capability-based mechanisms allowing each to be used
where appropriate and allowing their use in combi-

nation. Section 4 discusses the necessary features of a

distributed accounting service and shows how account-

ing fits the model. Section 5 discusses related work on
distributed authorization and accounting. Integration

of the described mechanisms with existing authentica-

tion systems is discussed in Section:6, and Section 7
discusses some of the more useful restrictions that can

be supported. Section 9 draws conclusions.

1 Introduction

The problem of authentication across computer
networks has received much attention in recent years.

Authentication is often only a step in the process of

authorization or accounting. The goal is to verify that

the individual making a request is authorized to do so,

or to guarantee that the correct individual is charged

for an operation. Despite the close ties among these

problems, little progress has been made in providing
secure, widespread, distributed mechanisms for autho-

rization and accounting. To date, authorization and
accounting have most often been supported locally by

a server, instead of by the use of distributed autho-

rization or accounting services. Such authorization

and accounting services will be critical as the network
is used more and more for electronic commerce and

other applications where clients and servers not previ-
ously known to one another must interact. By gener-

alizing the authentication model to support restricted

proxies, distributed authorization and accounting can

be easily supported.

2 Restricted proxies

A proxy is a token that allows one to operate with

the rights and privileges of the principal that granted

the proxy. Naturally, it must be possible to verify that

a proxy was granted by the principal that it names.

This is an authentication problem. In fact a principal
with the credentialsI needed to authenticateitselfcan

often grant a proxy to another principalsimply by

passingon those credentials.

Implementing proxies in this manner has several

shortcomings. First,the proxy can be used by anyone

that gets hold of it. This won't always be a prob-

lem, but in many cases one should be able to specify

the principalthat isto act on one'sbehalf.Second, a

proxy isallor nothing. The individualwho has been

granted the proxy can do anything that the grantor

could do on any serviceto which the originalcreden-

tialsapplied.

1Credentialsconsistofan encryptedcertificatetosetherwith "
information needed to use the certificate.

283

Proceedings of the 13th International Conference on Distributed Computing Systems, Pittsburgh, May 1993.

Certificate: [restrictions, lfprox_]U,,nto_

Proxy-key: Kp_oxy

Figure 1: A restricted proxy

A restricted prozg is a proxy that has had condi-

tions placed on its use. A principal possessing au-

thentication or authorization credentials can generate
a restricted proxy, a new set of credentials which are

more restricted than the original credentials; it is not

possible to remove restrictions. It must be possible
for the server to which a restricted proxy will be pre-

sented (the end-server) to verify that the restrictions
have not been tampered with. Among the restrictions

that are often specified are that the proxy may only be

used by a designated principal, or that the operations

that may be performed are to be restricted.
When a principal issues a restricted proxy to an-

other principal, the second principal is authorized to

perform all operations for which the first principal is

authorized on the server or servers for which the proxy
is applicable, subject to any restrictions recorded in

the proxy. In the discussion that follows, the grantor

is the principal on whose behalf a proxy allows access.

The grantee is the principal designated to act on behalf
of the grantor. The end-server is the server to which

the proxy must be presented to perform an operation.

The implementation of restricted proxies relies on

the use ofencryption-based authentication of the orig-

inal grantor of the proxy. Either conventional or

public-key cryptography may be used. In this section

I describe the implementation at a high level, inde-
pendent of the authentication mechanism in use. The

description assumes that the infrastructure needed to

authenticate the original grantor of a proxy is in place

and messages required by the underlying authentica-

tion protocol (e.g., for key distribution) are omitted

for clarity. These details, which are specific to the un-
derlying authentication mechanism, are described in
Section 6.

A restricted proxy has two parts: 1) a certificate

signed by the grantor establishing the proxy, enumer-

ating any restrictions, and establishing an encryption
(or integrity) key s to be used by the end-server to ver-

ify that the proxy was properly issued to the hearer,

and 2) a proxy key, an encryption (or integrity) key

corresponding to the key embedded in the certificate,

that will be used by the grantee to prove proper pos-

session of the proxy. Figure 1 shows the contents of a
restricted proxy; square brackets indicate a signature

by the principal indicated in the subscript, or under

2Depending on the authentication mechanisms in use, this

key may require additional protection from disclosure.

Ac_ounl_lg

Restricted Proxies

Base Authorization Mechanism

Authentication Infrastructure

4P

Figure 2: Relationship of security servaces

a separate encryption (or integrity) key. When a re-
stricted proxy is transferred from the grantor to the

grantee, care must be taken to protect the proxy key
from disclosure.

There are two classes of proxies: bearer proxies and

delegate proxies. A bearer proxy may be used by any-

one. A delegate proxy may only be used by a principal

named in a list of delegates (encoded as a restriction),
or by someone with a suitable additional proxy issued

by a named delegate.

To present a bearer proxy to an end-server, the

grantee sends the certificate to the server and uses the

proxy key to partake in an authentication exchange

with the end-server using the underlying authentica-

tion mechanism. Usually this exchange involves send-

ing a signed or encrypted timestamp or server chal-
lenge, proving possession of the proxy key.

To present a delegate proxy, the grantee sends the
certificate to the end-server and then authenticates

itself to the end-server under its own identity. The
end-server validat.es the certificate and verifies that

the client is included in the list of delegates specified

by the proxy.

3 Authorization

Restricted proxies provide the vehicle for imple-

menting a wide range of authorization mechanisms in

distributed systems. In this section I describe sev-

eral such mechanisms and show how they can be sup-

ported. Accounting mechanisms are described in Sec-
tion 4 and build upon the authorization mechanisms

described here. Figure 2 shows the relationship of such

mechanisms to restricted proxies and to the authenti-

cation infrastructure on which they depend.

284

Proceedings of the 13th International Conference on Distributed Computing Systems, Pittsburgh, May 1993.

3.I Capabilities

A capability can be thought of as a bearer proxy
that is restricted to limit the operations that can be

performed and the objects that can be accessed. No

restrictions are placed on the identity of the grantee

who is free to pass the capability to others. When

presented to the end-server, the grantor's rights (as

limited by the restrictions) are available to the bearer.
For example, to create s read capability for a par-

ticular file, a user authorized to read that file requests

a restricted proxy for use at the file server containing

the file (the end-server), but with the restriction that
it can only be used to read the named file. The ca-

pability is then passed to others who can themselves

pass it on. To use a capability, the bearer presents

it to the file server in place of (or in addition to) the
bearer's own credentials. If the request is to read the

file named in the capability, the operation is performed

with the rights of the grantor of the proxy.

A capabilityas described above differsfrom tradi-

tionalcapabilitiesin severalways. One of the most

important distinctionsisthat in presenting a capa-

bility(restrictedproxy) to the end-server,the bearer

does not send the entireproxy acrossthe network. In-

stead,the bearersends the certificatepartofthe proxy

and proves possessionby takingpart inan authentica-

tionexchange using the proxy key as described earlier.
The result is that an attacker can not obtain such a

capability by tapping the network to observe the pre-

sentation of capabilities by legitimate users.

A second distinction is that, as described above,

a capability allows a restricted impersonation of the

grantor, not direct access to the named object. This

means that one can revoke a capability by changing

the access rightsavailableto the grantor of the ca-

pability.Such a change would affectallcapabilities

that had been issued by that grantor (as wellas any

copies),but not those that had been issuedby others.

Ifthe only principalwith a pr/or/accessto an object

isitsowner, this distinctiondisappears as there can

be only one originalgrantor.

A finaldistinction,as implemented on most authen-

ticationsystems, isthat the resultingcapabilitywould

have an expirationtime. This isa feature.Ifa non-

expiring capabilityisdesired,the expirationtime can

be setsufficientlyfar inthe future.

3.2 An authorization server

An authorization server implemented using re-

strictedproxiesdoes not directlyspecifythat a par-

ticularprincipalisauthorized to use a particularser-

vice or access a particularobject. Instead, when

2 1 +

9nu,a,a,o mC2o _ + = .-+

I.AuthcnticaLcdauthorizationrequest(operationX)

2.[operationX only]R,(Kproxy} Ksession

3.[operationX only]R,authenticationusingKproxy

Figure 3: The authorizationprotocol

requested by an authorized client,the authorization

servergrants a restrictedproxy allowing the autho-

rizedclient(the grantee) to act as the authorization

serverfor the purpose of assertingthe client'srights

to accessparticularobjects. The restrictionsin the

proxy (in this case a listof authorized actions)are

determined by consulting the authorization server's

database or applying other suitableheuristics.

Figure3 shows the messages involvedwhen clientC
uses authorizationserverR for authorizationto end-

serverS. The solidlinesrepresentmessages in the au-

thorizationprotocol. The initialrequest for autho-

rizationisauthenticatedusing the underlyingauthen-

ticationprotocol.The authorizationcredentials(a re-

strictedproxy) returned in 2 consistof a certificate

and a proxy key. The proxy key isreturned protected

from disclosureby encrypting itunder the sessionkey

exchanged during authenticationwith R (encryption

isrepresentedby curlybraces {}). To use the proxy,

the clientpresentsthe proxy to the end-server,par-

taking in an authenticationexchange as describedin

Section 2. Message 0, the dashed linein the figure,

represents a prioriknowledge about the authoriza-

tioncredentialsneeded forserverS. This information

might be specifiedas part of the applicationprotocol,

retrievedfrom a name server,or obtained from the

end-serverdirectly.

An end-serverwishing to use the servicesofan au-

thorizationserverwould grant fullor the maximum

desiredaccessto the authorizationserver(thisisde-

scribedin detailin Section 3.5).

3.3 A group server

A group serverimplemented using restrictedprox-

ies grants proxies that delegate the right to assert

membership in a particulargroup. The protocol is

the same as that for the authorizationserver in fig-

ure 3; the authorized operation is the assertionof

group membership.

285

Proce._ings of the 13th International Conference on Distributed Computing Systems, Pittsburgh, May 1993.

Certificate: [restrictions1, l(v, ox_a]u,,_o,

Certificate: [restrictions2, I(_o_211(_,o_

Certificate: [restrictions3, I{p,ox_3]l(p, oz_2

Proxy-key: Kr**_s

Figure 4: Cascaded proxies

A group server might maintain more than one
group. The name of a group as asserted by the group

server is unique only for a particular group server (or

a small set of servers). As such, a global name of a
group is composed of the name of the group server,

and the name of the group on that server.

It should be possible for the name of a group to

appear in authorization databases anywhere that the
name of any other principal might appear. This might

be on the end-server, or in an authorization server, or

even on another group server. An end-server wishing

to use a group server would include the name of a
group in its authorization database. A client would

obtain a group proxy from the group server and send

it to the end-server when requesting an operation. The
end-server would verify the authenticity of the proxy

and the identity of the client, and if valid perform the

operation.
If the end-server's authorization database is main-

tained by an authorization server, then the client

would present the group proxy to the authorization

server, and if all checks out, the authorization server
would return an authorization proxy to be used by the

client as described in the previous subsection.

3.4 Cascaded authorization

In a paper on cascaded authentication [11], Sollins
proposed a method to pass authorization from party

to party when a task involves cascaded operations by

parties that do not completely trust one another. A

similar mechanism is supported more efficiently by re-

stricted proxies.

By its definition, a proxy allows one principal to

perform an operation on behalf of another. An inter-

mediate server that has been granted a bearer proxy
can pass that proxyto a subordinate server (the next

server in the pipeline) with additional restrictions ap-
plied. Restrictions are added by signing a new proxy

with the proxy key from the original proxy. The new

proxy specifies any additional restrictions and a new

proxy key. The certificates from both proxies are pro-
vided to the subordinate server, but only the proxy

key from the final proxy in the chain is provided. Fig-

ure 4 shows a chain of proxies that might be provided
to a subordinate server.

Cascaded authorization is a little different for del-

egate proxies. To pass a delegate proxy to a subordi-
nate, an intermediate server provides the subordinate
with the certificate from the original proxy. Because

the intermediate server is explicitly named in the orig-

inal proxy, it also grants the subordinate a new proxy-

allowing the subordinate to set as the intermediate
server for the purpose of executing the original proxy.

Instead of signing the new proxy with the proxy key

from the original proxy, it is signed directly by the
intermediate server. An important difference between

the two approaches to cascaded authorization is that

the use of a delegate proxy leaves an audit trail since

the new proxy identifies the intermediate server.
_, distinct difference between the cascaded authen-

tication approach described by Sollins and the ap-

proach described here is that in Sollins's approach the
end-server has to contact the authentication server to

verify the authenticity of a chain of proxies.

3.5 Access-control-lists and capabilities

By basing authorization on the proxy model, ap-

plication servers can easily combine the benefits of
access-control-lists and capability-based authorization

mechanisms. Application servers would be designed
to base authorization on a local secess-control-list.

Where a capability-based approach is required, the

access-control-list would contain a single entry naming

the principal (perhaps the server itself) authorized to

grant capabilities for server operations.
Similarly, when appropriate to hand off the autho-

rization function to a centrally maintained authoriza-

tion or group server, the name of the authorization
or group server would be added to the local access-

control-list. In fact, if local autonomy is desired, local

users might appear directly in the access-control-list

together with the name of an authorization server to

which the function of authorizing remote users has

been assigned.
Since the same access-control-list abstraction

should be used on the authorization servers as on other

servers, access-control-list entries can support an asso-

ciated list of restrictions. On an authorization server,

the restrictions field of a matching secess-control-list

entry can be copied to the restrictions field of the re-

suiting proxy. These would be in addition to restric-

tions transferred from any proxies presented to the
authorization server or those imposed by the server
itself.

Finally, by supporting compound principal identi-

fiers in access-control-list entries, it becomes possible

to require the concurrence of multiple principals for

286

Proceedings of the 13th International Conference on Dis_ibuted Computing Systems, Pittsburgh, May 1993.

certain operations. Among other things, this func-
tionality allows one to specify the need for both user

and host credentials for certain operations as well as

the separation of privilege so that a single user can't
act alone. Proxy-based authorization allows a user to

obtain proxies from more than one grantor for a par-

ticular operation, providing the mechanism by which
the user would assert such concurrence.

4 Accounting

Section 3 showed how restricted proxies support a

wide range of authorization mechanisms. Accounting
is closely tied to authorization; in fact, the two are in-

terdependent. Authorization depends on accounting
when a server verifies that a client has been allocated

sufficient resources (e.g, quota) to perform an opera-

tion. Conversely, accounting depends on authorization
to control the transfer of resources from one account

to another.

In our design, accounts are maintained on account-

ing servers. At a minimum, each account contains
a unique name, an access-control-list,and a collec-

tion ofrecords,each recordspecifyinga currency and

a balance. Accounting serverssupport multiple cur-

rencies,eithermonetary (dollars,pounds, or yen) or

resource specific(disk blocks,cpu cycles,or printer

pages).Quotas are implemented by transferringfunds

ofthe appropriatecurrency out ofan account when the

resource isallocatedand transferringthe funds back
when the resource is released. Accounts are identi-

fiedas the composition of the principalidentifierfor

the accounting serverand the name of the account on

the server.Itispossibleto transferresourcesfrom an
account on one serverto one on another.

The transfer of resources call be accomplished

through two distinct mechanisms. The simplest mech-
anism is used when no guarantee is required that suf-

ficient resources exist. A principal authorized to debit

an account (the payor) issues a numbered delegate

proxy (a check) authorizing the payee to transfer funds

from the payor's account to that of the payee. This
check limits the resources that can be transferred, and

the payee transfers up to that limit. If the payor uses

a different accounting server than the p.ayee, the payee
grants its own accounting server a cascaded proxy

(endorsement) for the check allowing the accounting
server to collect the resources on its behalf. Subse-

quent accounting servers repeat the process until the

payor's accounting server is reached. Once a check is

paid, the accounting server keeps track of the check
number until the expiration time on the check. If,

within that period, another check with the same num-

ber is seen, it is rejected.

check: [cknoju_ount, S]C

El: [ckno,amoum,S]C [dep ckno to $1]S

E2: [ckno,amount,S]C [dep ckno to $1]S [dep ckno to $2]$1

Figure 5: Processing a check

Eigure 5 shows the messages involved in issuing and

clearing such a check. In the figure, accounting servers

are labeled by Ss. The first message represents a check

signed by C drawn on C's accounting server $2 made

payable to server S. Upon completion of C's request, S
endorses the check and deposits it with its accounting

server in message El. The endorsement is a restricted

proxy that will be used for cascaded authorization. A

restricted endorsement (e.g. for deposit only) is a del-

egate proxy, an unrestricted endorsement is a bearer

proxy.

In this case, C and S do not share the same ac-

counting server, so $1 marks the resources added to

S's account as uncollected, adds its own endorsement

and forwards the check to $2 in message E2. If nec-

essary, such endorsements can be repeated until the

check reaches the client's accounting server, but in this

case only one additional step is necessary. This dis-

tributed method for accounting requires out-of-band
mechanisms to deal with checks returned for insuf-

ficient resources, or because they are forged or mis-

drawn, but the same is true in the real world.

Tile second approach for transferringresourcesis

used when a serverrequiresa guarantee that sufficient

resourceshave been allocatedto the client,as isoften

the case when maintaining quotas. The approach is

analogous tothatofa certifiedcheck. The clientdraws

a check and provides the details(the check number,

the party to be paid,and the amount) to the account-

ing server.The accountingserverplacesa hold on the

resourcesand returns an authorizationproxy to the

clientcertifyingthat the clienthas sufficientresources

to cover the check. The clientpresentsthe authoriza-

tionproxy and the check to the end-serveralong with

itsapplicationrequest.

Once the requestedoperationisperformed, the end-

servernegotiatesthe check as describedearlier.When

the check reaches the client'saccounting server,the

accounting server looks for the check in its listof

287

Proceedings of the 13th International Conference on Distributed Computing Systems, Pittsburgh, May 1993.

outstanding certified checks, and if found, makes the
transfer. Cashier's checks are also easily supported
by this accounting model; the details are left as an
exercise for the reader.

5 Related work

This section describes other work that has been

done on authorization and accounting for distributed
systems. Some of the earliest work in the area is found
in Grapevine [2] where end-servers query registration
servers to determine whether a client is a member of

a particular group. A similar approach is employed in
Sun's Yellow Pages where centrally maintained files
such as /etc/group are consulted for authorization
purposes. In both approaches, the authorization de-
cision remains with the local system. With the dis-
tributed authorization and group services supported
by restricted proxies, the authorization decision can
be delegated to a remote server.

There have been several proposals concerning for-
warding and delegation of authentication in dis-
tributed systems. Karger [6] proposed a server that
keeps track of special passwords that are established
when a user logs in. These passwords are passed to
other systems which act on the user's behalf for opera-
tions that require the cascaded use of multiple servers.
This scheme is not encryption-based, but relies on se-
cure channels for passing the special passwords. These
channels might be implemented on top of an end-to-
end encryption mechanism.

A mechanism that comes close to restricted proxies
is the cascaded authentication mechanism described

by Sollins [11] in which restrictions can be added as
credentials are passed from system to system. The
differences between Sollins' approach and proxy-based
cascaded authorization was described in Section 3.4.

The proxy model described by this paper was de-
signed for use in Version 5 of the Kerberos authentica-
tion system. Support for proxies was first included in
the Kerberos protocol specification in mid 1989 [7]. At
about the same time', another mechanisms for delega-
tion was developed as part of the Digital Distributed
System Security Architecture [4, 5]. In the DSSA,
principals generate and sign delegation certificates to
allow intermediate systems to act on their behalf. An
important difference is that in the DSSA, restrictions

are supported only by creating separate principals,
called roles, and by generating a delegation certifi-
cate for one of the roles instead of for the original
principal. The delegation then supports only access
specifically authorized for that role. Tile creation of
a new role is cumbersome when delegating on the fly

Certificate: {restrictions, KpToz_} K_Tl,,,,o_

Proxy-key: /f-1profit •

Figure 6: A public-key restricted proxy

or when granting access to individual objects. "]_oles
can not be used to implement the authorization server
described in Section 3.2.

Functionality similar to that of the authorization
and group services of Sections 3.2 and 3.3 has been
proposed as part of the European Computer Man-
ufacturers Association standard for security in open
systems [1]. The ECMA standard defines Privilege
Attributed Certificates (PACs) signed by an author-
ity,and certifying that the bearer or a named principal
possess certain privileges.

Work is underway for the Open Software Founda-
tion's Distributed Computing Environment that uses
restricted proxies as supported by Kerberos to pass au-
thorization information. In particular, they have im-
plemented a privilege attribute server that signs cer-
tificates asserting a principal's unique identifier and
a set of user groups to which the principal belongs.
Plans are in place to extend their mechanism to sup-
port delegation [3].

Surprisingly little attention has been paid to the
issue of accounting in distributed systems. Sentry [9]
lays the groundwork for accounting by describing a
mechanism that would be c_located with an authenti-

cation and authorization server. Although they share
a common mechanism, it seems apparent now that

there is little to be gained by requiring all three ser-
vices to be co-located. Like the accounting mechanism
described here, Sentry pointed out the need to support
multiple currencies.

Amoeba [8] supports a distributed bank server iden-

tical in purpose to the accounting server based on re-
stricted proxies. The protocol used by Amoeba's bank
server is significantly different, however. In Amoeba,
a client must contact the bank and transfer funds into

the server's account before it contacts the server. The
server will then provide services until the pre-paid
funds have been exhausted. Like the mechanism de-

scribed here, Amoeba supports multiple currencies.

6 Integration with existing systems

It is straightforward to implement restricted prox-
ies using encryption-based authentication mechanisms
based on either public-key or conventional cryptogra-
ph)'. This section shows how proxies can be imple-
mented with either approach and describes the specific
details of their support in Version 5 of the Kerberos
authentication system.

288

Proceedings of the 13th International Conference on Distributed Computing Systems, Pittsburgh, May 1993.

6.1 Public-key cryptography

The certificate for a public-key proxy contains a

proxy key generated by the grantor, the expiration
time of the proxy, and the restrictions imposed its use.

The proxy key embedded in the proxy certificate is a

public key from a public/private key pair. The proxy

key provided to the grantee is the other key from that
pair. All fields are signed by encrypting them with the

grantor's private key. Figure 6 shows a proxy gener-

ated in this manner. The signed proxy is additionally

tagged with the name of the grantor to enable those
needing to verify the proxy to select the correct key.

If the authentication system is purely public-key,

a public-key digital signature algorithm can be used

in place of the encryption system and the encryption

step would be replaced by the sealing of the certificate
with a cryptographic checksum. If a hybrid authenti-

cation system is used, where subsequent keys are from

a conventional cryptosystem, then the proxy key is

a conventional key generated by the grantor and the
proxy key must be additionally encrypted in the public

key of the end-server to protect it from disclosure.

The proxy is returned to the grantee. When the

grantee presents the proxy to an end-server, the end-

server decrypts the proxy using the public key of

the grantor (obtained from an authentication/name
server), verifies the authenticity of the proxy, accepts

additional authentication from the grantee (either per-

sonal authentication for a delegate proxy or proof that

it knows the proxy key for a bearer proxy), checks

the restrictions, and if all checks out, performs the

requested operation.

6.2 Restricted proxies in Kerberos

A proxy implemented using an authentication sys-
tem based on conventional cryptography is identical

to that in figure 6 except that the proxy is accompa-

nied by credentials authenticating the grantor to the

end-server. The proxy certificate is encrypted using

the session key generated by an authentication server,

the session key also having been earlier sealed in the

credentials. The proxy key is a secret key generated

by the grantor. This key is both sealed in the proxy

certificate and securely passed to the grantee. The re-
mainder of this section describes the integration of re-

stricted proxies with Kerberos [12], an authentication

system based on conventional cryptography developed

as part of MIT's Project Athena.

Kerberos credentials are issued by an authentica-

tion server and presented by a client to prove its iden-

tity to a particular end-server. Credentials consist of

two parts: a ticket, and a session key. The ticket con-

rains the name of the authenticated principal and a

session key. It is encrypted using the secret key shared
by the end-server and the Kerberos server. The ses-

sion key is never sent across the network in the clear.
The session key is returned to the client encrypted in

the session key shared by the client and the Kerberos
server.

To prove its identity, a client sends the ticket to the

end-server along with an authenticator which has been

encrypted using the session key. The authenticator

proves that the client actually possesses the session key
included in the ticket. Without this step an attacker

would be able to reuse a ticket that it obtained by

eavesdropping on an earlier exchange.
_Kerberos has been in use at MIT since Fall of 1986,

and it has been used elsewhere since then. Version 5 of

Kerberos [7] is the first major revision of the protocol

since its original release and contains several new fea-

tures important for the practical support of restricted
proxies. The inclusion of explicit support for prox-

ies in Version 5 makes their use more transparent to

applications which have already been modified to use
Kerberos.

The Version 5 ticket and authenticator each have

a new field called authorization-data. This field con-

sists of an arbitrary number of typed sub-fields, each of

which places restrictions on the use 6f the ticket. The

Kerberos protocol does not specify how the sub-fields

are to be interpreted except to stress that restrictions

must be additive. Each subfield places additional re-

strictions on the use of credentials, never removing

restrictions or granting additional privileges.

When tickets are requested, the requesting princi-
pal can specify that restrictions be placed on their use.

When new tickets are issued based on existing creden-

tials, restrictions may be added, but not removed. To

add restrictions to an existing ticket, a client gener-

ates an authenticator specifying a proxy key in the

subkey field and specifying additional restrictions in
the authorization-data field. The ticket and authenti-

cator are treated as the new proxy and provided with

the new proxy key to the grantee. Once obtained, the
grantee can use such a proxy the same way it uses any

other credentials issued by the authentication system.

6.3 Discussion

Supporting proxies within an authentication mech-

anism has several advantages. Transparency is one ad-

vantage; a second is that the initial authentication of a

user can itself be thought of as the granting of a proxy
and restrictions can be placed on the credentials based

on the characteristics of the initial exchange with the
authentication server.

'°

289

Proceedings of the 13th International Conference on Distributed Computing Systems, Pittsburgh, May 1993.

A disadvantage of using conventional cryptography

to implement proxies is that each pxoxy can be used at
only a particular end-server. This is offset by imple-

menting proxies within Kerberos itself since it is possi-
ble to issue a proxy for the Kerberos "ticket-granting"

service. Such a proxy allows the grantee to obtain

proxies with identical restrictions for additional end-
servers as needed.

7 Common restrictions

The restrictions field of a proxy should be inter-

preted as a collection of typed subfields, each type

corresponding to a different restriction. This section
describes several of the more useful restrictions and

some that demonstrate the flexibility of the model.

Additional restrictions are described in [10]. Neither
should be construed as a complete list.

7.1 Grantee

This restriction specifies a list of principals autho-

rized to use a proxy and the number of principals from

the list needed to exercise the proxy (usually one). To
use such a proxy a principal must present the authenti-

cation credentials of a named grantee, or an additional

proxy granted by a named grantee, to the end-server
along with the proxy. If the grantee restriction is

missing, the proxy is a bearer proxy and may be used

by anyone possessing it. To exercise a bearer proxy the

bearer must take part in an authentication exchange

proving possession of the proxy key thus preventing an

attacker from using a proxy obtained by eavesdropping
on the network.

7.2 For-use-by-group

The for-use-by-group restriction specifies the list

of groups authorized to use a proxy and the number
of groups from the list required. To use such a proxy,

the bearer presents the proxy along with additional
proxies from appropriate group servers. One way to

implement separation of privilege is to require asser-

tion of membership in multiple groups with disjoint
members.

7.3 Issued-for

The issued-for restriction specifies a list of servers

authorized to accept the proxy. This restriction is im-

portant for public-key proxies which are otherwise ver-
ifiable by and exercisable on all servers.

7.4 Quota

The quota restriction specifies a currency and a

limit. It limits the quantity of a resource that can be
consumed or obtained. It will most often be found in

a proxy issued by an accounting server.

7.5 Authorized

The authorized restriction specifies a complete list

of those objects which may be accessed using the rights

granted by a proxy and optionally a list of operations
that may be performed on each object. This r_t_ic-
tion usually appears in proxies used as capabilities.

It also appears in proxies returned by an autl_qriza-
tion server. There are no constraints on 'the form of

the object names or the list of operations other than

that the grantor and the end-server must agree. These
fields are to be interpreted by the end-server.

7.6 Group-membership

This restriction specifies that the grantee is a mem-
be_of only the listed groups. It would be included in

_/proxy issued by a group server to limit the groups to

which one is a member. Without this restriction, the

grantee would be considered a member of all groups

maintained by the group server granting the proxy.

7.7 Accept-once

The accept-once restriction tells an end-server

that it is only to accept a proxy one time. This re-

striction takes an identifier as an argument. Any sub-
sequent proxy from the same grantor bearing the same

identifier and received by the end-server within the ex-

piration time of the first proxy is rejected. A real life

example of such an identifier is a check number.

7.8 Limit-restriction

Restrictions that are defined only for particular

end-servers are sometimes needed. If a proxy can be
used on a server to which some restrictions do not

apply, those restrictions must be associated with the

name of the server to which they do apply. This is

accomplished with the limit-restriction restriction
which takes a list of servers and a list of other restric-

tions. The restrictions embedded within this restric-

tion will be enforced by the named servers and ignored
by others.

7.9 The propagation of restrictions

Authentication, authorization, and group servers

accept proxies and issue proxies. If a proxy is issued
based upon a proxy that includes restrictions, those

restrictions should be passed on to the proxy to be is-

sued. If a restriction is limited (see limit-restrlction)

then the restriction may be left out if it can be guar-

anteed that the proxy to be issued, and any proxies
that might later be derived from it, can not be used

for any of the servers listed in the limited restriction.

290

Proceedings of the 13th International Conference on Distributed Computing Systems, Pittsburgh, May 1993.

8 Status

A beta release of Kerberos Version 5 is avail-

able. The release includes support for restricted prox-
ies. Information on the Kerberos release is available

from _fo-kerberos_ait.edu. Authorization and

accounting services built with restricted proxies are
being developed at the Information Sciences Institute

of the University of Southern California.

9 Discussion and conclusions

The problems of authentication, authorization, and

accounting are closely related. By subtly changing the
way one thinks about the problems, the similarities be-

come apparent. By extending an authentication sys-

tem to support restricted proxies, it becomes possible
to support flexible distributed authorization and ac-

counting mechanisms. The proxy model strikes a bal-

ance between access-control-list and capability-based

mechanisms allowing each to be used where appropri-
ate and allowing their use in combination.

This paper has shown how restricted proxies can be

supported using existing authentication systems and

how they are used for authorization and accounting.

The resulting mechanisms scale and appear natural

when compared with their analogues in society.

Acknowledgments

I would like to thank C,eleste Anderson, Steven Au-

gart, Steve Bellovin, Deborah Estrin, David Keppel,
John Kohl, Ed Lazowska, Joe Pato, Karen Sollins, Bill

Sommerfeld, Stuart Stubblebine, and Prasad Upasani
for discussions of restricted proxies and comments on

drafts of this paper.

References

[1] European Computer Manufacturers Association.

Security in open systems: Data elements and
service definitions, December .1989. Standard
ECMA-138.

[2] Andrew D. Birrell, Roy Levin, Roger M. Need-

ham, and Michael D. Schroeder. Grapevine: An

exercise in distributed computing. Communica-

tions of the ACM, 25(4):260-274, April 1982.

[3] Marlena E. Erdos and Joseph N. Pato. Extending

the OSF DCE authorization system to support
practical delegation. In Proceedings of the PSRG

Workshop on Network and Distributed System
Security, pages 93-100, February 1993.

[4] M. Gasser, A. Goldstein, C. Kaufman, and

B. Lampson. The Digital distributed system secu-

rity architecture. In Proceedings of the 1989 Na-

tional Computer Security Conference, pages 305-
319, October 1989.

[5] M. Gasser and E. McDermott. An architecture

for practical delegation in a distributed system.

In Proceedings of the 1990 IEEE Symposium on

Security and Privacy, pages 20--30, May 1990.

[6] Paul A. Karger. Authentication and discretionary

access control in computer networks. Computer

Networks and ISDN Systems, 10(1):27-37, 1985.

[7] John T. Kohl and B. Clifford Neuman. The Ker-

beros network authentication service: Version 5

draft protocol specification. August 1989. Re-
vised November 1989, October 1990, December

1990, June 1991, September 1992, April 1993.

[8] S. J. Mullender and A. S. Tanenbaum. The de-

sign of a capability-based distributed operating

system. The Computer Journal, 29(4):289-299,
1986.

[9] B. Clifford Neuman. Sentry: A discretionary

access control server. Bachelor's Thesis, Mas-

sachusetts Institute of Technology, June 1985.

[10] B. Clifford Neuman. Proxy-based authorization

and accounting for distributed systems. Technical

Report 91-02-01, Department of Computer Sci-

ence and Engineering, University of Washington,
March 1991.

Ill] Karen R. Sollins. Cascaded authentication. In

Proceedings of the 1988 IEEE Symposium on Re-

search in Security and Privacy, pages 156-163,
April 1988.

[12] J. G. Steiner, B. C. Neuman, and J. I. Schiller.

Kerberos: An authentication service for open

network systems. In Proceedings of the Winter

1988 Useniz Conference, pages 191-201, Febru-
ary 1988.

This research was supported in part by the National Science

Foundation (Grant No. CCR-8619663), the Washington Tech-

nology Centers, Digital Equipment Corporation, and the De-

fense Advance Research Projects Agency under NASA Cooper-
ative Agreement NCC-2-539. The views and conclusions con-

tained in this paper are those of the author and should not

be interpreted as representing the official policies, either ex-

pressed or implied, of any of the funding agencies. The author

may be reached at USC/]SI, 4676 Admiralty Way, Marina del

Rey, CA 90292-6695, USA. Telephone +1 (310) 822-1511, small
bcn@isi.edu.

291

Proceedings of the 13th International Conference on Distributed Computing Systems, Pittsburgh, May 1993.

